Titel: Barwert Autor: M. Schaarschmidt E-Mail: bon13@gmx.de Url: http://manib.bplaced.net/blog/?page_id=169 Umgebung: Taschenrechner Hersteller: Casio Typ: FX-850P/FX-880P Beschreibung: Ein Programm zur Berechnung des heutigen Wert zukünftiger Zahlungen.
Barwert-Berechnung (eingesendet von M. Schaarschmidt)
--------------------------------------------------------------------------------------- Barwert-Berechnung (Basic-Programm, optimiert für Casio FX-850P / FX-880P) von M. Schaarschmidt, Mail: bon13@gmx.de --------------------------------------------------------------------------------------- (1) Zweck ---------- Mit Hilfe des Barwertes bestimmt man den heutigen Wert zukünftiger Zahlungen, die man erhält oder bezahlen muss. Daher spricht man auch vom Gegenwartswert oder „present value“. Die zukünftigen Zahlungsströme t1, t2, usw. werden auf den heutigen Betrachtungszeitpunkt t0 abgezinst. Im Punkt 4 folgen zwei Anwendungsbeispiele. (2) Ablauf ----------- Bildschirm Eingabe -------------------------------- *** Barwertberechnung *** Programmname und Autor von M.Schaarschmidt 2007 [EXE] drücken -------------------------------- Masseinheit der Laufzeit festl. Zeiteinheit, in der zwischen t0, t1 usw. (1)Tage (2)Monate (3)Jahre: 1 gemessen wird, eingeben und [EXE] drücken -------------------------------- Anzahl der Zahlungen (Cash Flow) Anzahl der zukünftigen Zahlungszeitpunkte eingeben: 1 eingeben (Cash Flow Zeitpunkte) -------------------------------- Daten der 1. Zahlung eingeben Die folgenden Eingaben werden für jeden Zahlungszeitpunkt wiederholt, jetzt: t1 [EXE] drücken -------------------------------- Zeitraum bis zur Zahlung: 365 Tage oder Monate oder Jahre zwischen t0 und t1 eingeben (1. Zahlungszeitpunkt) -------------------------------- Betrag: 200000 Betrag, der bei t1 zu zahlen / zu empfangen ist -------------------------------- Zinssatz (laufzeitbezogener Disp Marktzins für den Zeitraum t0 bis t1, z.B. ontzins): 9 1-Jahreszins, wenn 1 Jahr als Zeitraum gewählt -------------------------------- Barwert der 1. Zahlung heute = Eine Zahlung von z.B. 200.000 EUR in 365 Tagen 183486.2385 ist heute 183.486,24 EUR wert bei einem Zins von 9%. [EXE] drücken -------------------------------- Falls Anzahl der Zahlungen>1 eingegeben wurde, werden jetzt die Daten für den 2. Zahlungszeit- punkt erfragt und der Barwert für t2 angezeigt usw. -------------------------------- Summe der Barwerte heute = Nachdem die Einzelbarwerte aller Zahlungszeit- 183486.2385 punkte ermittelt wurden, wird hier die Summe der Barwerte ausgegeben. [EXE] drücken für Ende -------------------------------- (3) Hinweise ------------- Wichtig: Der Zeitraum der Zahlung geht immer von t0 aus, wird also immer länger. 1. Zahlung: t0 bis t1 (z.B. 365 Tage) 2. Zahlung: t0 bis t2 (z.B. 400 Tage) 3. Zahlung: t0 bis t3 (z.B. 1000 Tage) Der Zeitraum zwischen den einzelnen Zahlungszeitpunkten kann unterschiedlich lang sein, ist jedoch immer in der gleichen Masseinheit (Tage oder Monate oder Jahre) anzugeben. Ebenso Marktzins: fristenkongruenten Zinssatz für die Laufzeit von t0 bis t1, t0 bis t2, t0 bis t3 usw. eingeben. Bei einer normalen Zinsstruktur am Geld- und Kapitalmarkt werden die Zinssätze mit steigender Laufzeit grösser. Marktzinssätze kann man z.B. im Internet beziehen von www.bundesbank.de Zur Not können auch alle Zahlungszeitpunkte mit dem gleichen Zinssatz gerechnet werden. (4) Beispiele -------------- a) Für eine Investition (Anschaffungsauszahlung) sind heute 1.000 EUR zu bezahlen. In den 3 Folgejahren werden Erträge (Cash Flows) von jeweils 200 EUR erwartet. Der Marktzins beträgt 4,0 %. Lohnt sich diese Investition? Lösung: Zahlungszeitpunkte und Cash Flows t0 -1.000,00 -- 1 Jahr --> t1 +200 ---- 2 Jahre ---------> t2 +200 -------- 3 Jahre -------------> t3 +200 Barwerte der abgezinsten Cash Flows: +192,31 (t1) +184,91 (t2) +177,80 (t3) Addition mit Anschaffungsauszahlung in t0 ergibt: -444,98 EUR Ergebnis: Diese Investition rechnet sich zumindest nach 3 Jahren noch nicht. Bei einer Anschaffungsauszahlung ist t0 gleichzeitig auch ein Zahlungszeitpunkt, d.h. bei Beispiel a) geben Sie in das Programm ein: Anzahl der Zahlungen: 4 Betrag 1. Zahlung: -1000 Zeitraum bis zur Zahlung: 0 (heute) ... Betrag 2. Zahlung: 200 Zeitraum bis zur Zahlung: 1 (Jahr) ... b) Eine Schuldverschreibung mit 3-jähriger Restlaufzeit und einer Verzinsung von 4,0 % hat derzeit (30.09.2006) einen Kurs von 101,74. Der vergleichbare Marktzins liegt bei 3,25%. Ist der Kauf der Schuldverschreibung derzeit gewinnbringend? Daten der Schuldverschreibung: Nominalwert in EUR 10.000,00 Nominalzins 4,00% akt. Kurs in t0 101,74% Marktrendite 3,25% Fälligkeit 30.09.2009 Rückzahlungskurs 100,00% Lösung: Zahlungszeitpunkte und Cash Flows t0 -10.174,00 -- 1 Jahr --> t1 +400 (Zins) ---- 2 Jahre ---------> t2 +400 (Zins) -------- 3 Jahre -------------> t3 +10.400 (Zins und Rückzahlung) Barwerte der abgezinsten Cash Flows: +387,41 (t1) +375,21 (t2) +9.448,51 (t3) --------- +10.211,13 Summe der Barwerte Der Barwert (10.211,13) übersteigt den aktuellen Marktwert bzw. den Kaufpreis der Schuldverschreibung (10.174,00). Das Wertpapier ist daher unterbewertet und sollte gekauft werden. (5) Haftungsausschluss ----------------------- Das Programm „Barwert.bas“ sowie diese Anleitung sind Freeware und dürfen -nur zusammen- frei verteilt werden. Die Anwendung erfolgt daher ausschließlich auf eigene Gefahr. Der Autor übernimmt trotz sorgfältiger Programmierung und Dokumentierung keine Haftung für die Funktionsfähigkeit oder Richtigkeit aller Ergebnisse oder für Schäden, die aus der Anwendung des Programms an sich resultieren.
Hier ist der Quellcode zu Barwert:
Wenn ihr auch einen tollen Quelltext zum Casio habt, dann nicht’s wie her damit! Schickt mir einfach ein E-Mail mit dem Quelltext und eine kurze Beschreibung dazu. Ich werde ihn dann hier auf meiner Casio Seite präsentieren.
Das war’s mal wieder. Ich hoffe dieser Artikel hat euch gefallen. Über eine Antwort von Euch würde ich mich freuen. Wenn ihr Anregungen habt, oder Verbesserungsvorschläge, dann gebt mir bitte ein Feedback. Falls ihr weitere interessante Artikel lesen wollt, dann schaut mal hier rein.
Ciao,
Manfred